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Abstract 
Recent advances in the digitization of manufacturing have 

prompted ASME and ISO standards committees to reexamine 

the definition of datums. Any new definition of datums 

considered by the standards committees should cover all datum 

feature types used in design, and support both traditional 

metrological methods and new digital measurement techniques. 

This is a challenging task that requires some careful 

compromise. This paper describes and analyzes various 

alternatives considered by the standards committees. Among 

them is a new mathematical definition of datums based on 

constrained least-squares fitting. It seems to provide the best 

compromise and has the potential to support advanced 

manufacturing that is increasingly dependent on digital 

technologies.   

1. Introduction 
Datums can be found everywhere in industry that is engaged 

in manufacturing. Standards define how datum features should 

be identified in design documents and used in manufacturing [1-

7]. The design documents can be in the form of traditional two-

dimensional (2D) projected views in drawings, or in the form of 

computer files that contain representations of three-dimensional 

(3D) models as presented in Fig. 1. During production, datum 

features are used to plan manufacturing processes; for example, 

which features should be machined first and within what 

tolerances, and how to position a workpiece in a machining 

fixture. During and after part production, datum features are used 

for inspection planning; for example, to make in-process 

measurements for quality control, and to check for conformance 

of a manufactured part to designer-specified tolerances [8]. 

Traditional inspection methods create datum feature 

simulators by employing physical devices such as surface plates, 

angle blocks, opening and closing vises, and expanding and 

contracting chucks. But this physical world is now being 

challenged by the emergence of the digital world. Recent 

advances in measurement science and technology have ushered 

in Coordinate Measurement Systems (CMS) and scanning 

devices that are Internet-enabled – as part of the current popular 

trend in Internet of Things (IoT) [9, 10]. These devices and 

systems can collect and communicate vast amounts of 3D 

coordinate data that can number in the millions and are 

sometimes referred to as ‘point clouds,’ and software has the 

potential to numerically simulate the datum features without 

resorting to the type of physical devices mentioned above. 

 

 

Figure 1. Datum features are indicated as A, B, and C within 

boxes in a 3D model [5]. 

Digitization of manufacturing is not confined to metrology. 

A recent industrial initiative called ‘digital thread’ envisions a 

seamless flow of 3D information in an enterprise all the way 

from design (as illustrated in Fig. 1) through production, and 
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finally to retirement [11]. In this process, physical mock-ups are 

replaced by digital mock-ups – including all aspects related to 

datums – throughout a product’s lifecycle in an engineering 

enterprise. Such an enterprise is also called a model-based 

enterprise [12] to emphasize the role of informational, 

computational, and mathematical models in digitization of 

manufacturing. 

Digitization of manufacturing has also sparked an 

international re-thinking of manufacturing at large. This new 

way of thinking has given rise to terms and initiatives such as 

Smart Manufacturing, Cyber-manufacturing, Cyber-Physical 

Production Systems, and Industrie 4.0 [13, 14]. The rapid rise 

and adoption of these concepts have prompted standards 

development organizations such as ASME and ISO 

(International Organization for Standardization) to reexamine 

the definitions of geometrical product specifications and 

verifications. If these organizations don’t step up to 

standardizing new definitions that can support rapid advances in 

digitization of manufacturing, some ad hoc practices and 

definitions will emerge, and chaos will ensue. 

It is in this context that ASME and ISO are considering a 

new definition of datums and related concepts that will utilize 

digital technologies and support advanced manufacturing. But 

any new definition that will emerge from their standards 

committees should also support traditional datum establishment 

practices that use physical devices, such as surface plates 

mentioned earlier. This paper describes and analyzes various 

alternatives considered by the standards committees. Among 

them is a new mathematical definition of datums based on 

constrained least-squares. It seems to provide the best 

compromise and has the potential to support advanced 

manufacturing that is increasingly dependent on digital 

technologies.  

The rest of the paper is organized as follows. Section 2 

presents some fundamental mathematical concepts of datums 

that have been standardized by ASME and ISO. Establishment 

of physical and digital datums is discussed in Section 3. A new 

mathematical definition of datums based on constrained least-

squares fitting is introduced and explained in Section 4. Finally, 

Section 5 summarizes the main contribution of the paper and 

offers some concluding remarks.  

 

2. ASME and ISO Standards on Datums 
 Datums and datum features are defined in ASME and ISO 

standards using stylized symbols and textual prose. To illustrate 

this, first consider the problem of specification and verification 

involving planar datum features. Figure 2(a) shows how a 

designer may graphically present the specification of position 

tolerancing of a cylindrical hole in a part with respect to a system 

of primary and secondary planar datums. Figure 2(b) illustrates 

how such a system of primary and secondary datum planes may 

be established on a manufactured instance of the part. 

As a second illustration, consider the problem of 

specification and verification involving a cylindrical datum 

feature. Figure 3 shows a simple example of how a designer may 

graphically present the specification of cylindrical datum feature 

(as primary and secondary datum feature) to position a pattern of 

holes in a part. Figures 3(b) and 3(c) show how such primary and 

secondary datums may be established on manufactured instances 

of the part. 

     

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

(b) 

Figure 2. Illustration of planar datums. (a) Specification of 

planar datum features during design of a part, and (b) 

establishment of a system of primary and secondary datum 

planes on a manufactured instance of the part. The secondary 

datum plane B is required to be perpendicular to the primary 

datum plane A. 

The standards cover more than planar and cylindrical datum 

features. The following Section 2.1 gives a brief description of a 

compact classification of all datum features based on group 

theory that has been adopted by both ASME and ISO standards. 

Features of size play an important role in the definition of datum 

features in standards, and these are classified and described in 

Section 2.2.  

2.1 Continuous symmetry groups and datums 
Datums are used to position one set of geometrical elements 

relative to another set of geometrical elements. For example, in 

Fig. 2 a datum system consisting of the primary datum plane A 

and a secondary datum plane B is used to position a cylindrical 

feature with respect to the set of planar datum features. Similarly, 

in Fig. 3 a datum system consisting of planar and cylindrical 

features is used for relative positioning of a pattern of four 

cylindrical holes with respect to the set of datum features. 

Needless to say, there are several different types of datum 

features in industrial practice than just planar and cylindrical 

datum features. 

B 
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A major theoretical breakthrough occurred in the mid-1990s 

that provided a compact classification of all possible types of 

datum features encountered in industry [15-17]. This is based on 

a classification of continuous symmetry groups of geometric 

transformations in 3D, and is enumerated in Table 1. The second 

column in Table 1 gives the theoretical designations of seven 

classes of continuous symmetry in 3D. The third column 

provides some simple illustrative examples of the surface 

features that fall under these symmetry classifications. 

 

 

 

 

 

 

 

 

 

 

(a) 

 

 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

(c) 

Figure 3. Illustration of cylindrical datum feature. (a) 

Specification during design of a part, and (b, c) establishment of 

systems of primary and secondary datums involving cylindrical 

features on manufactured instances of the part. 

To explain what is meant by symmetry, first consider the 

planar class in Table 1. Any unbounded (that is, infinite) plane 

remains invariant (that is, remains the same from a point-set 

consideration) when it is subjected to independent translations 

along two directions in the plane and one rotation about an axis 

perpendicular to that plane. The plane thus has three degrees-of-

freedom (two translations in the plane, and one rotation 

perpendicular to the plane) that keep the plane invariant. It 

should be noted that this observation holds true even for two or 

more parallel planes – thus parallel planes that bound ‘slabs’ and 

‘slots’ also have planar symmetry. The three degrees-of-freedom 

mentioned above for a planar class are also the familiar 

‘kinematic’ degrees-of-freedom. That is, a planar kinematic pair 

will exhibit these relative motions in a planar kinematic joint.            

Table 1. Seven classes of continuous symmetry in 3D [15-17]. 

 Symmetry 

Class Type 

Illustrative Surface 

Features 

Reference 

Element(s) 

 

1 

 

Planar 

 

 

 

 

 

plane 

 

 

2 

 

 

Cylindrical 

 

 

 

 

 

 

 

line (axis) 

 

 

3 

 

 

Helical 

 

 

 

 

 

 

 

helix 

 

 

4 

 

 

Spherical 

 

 

 

 

 

 

 

 

point (center) 

 

 

5 

 

 

Revolute 

 

 

 

 

 

 

line (axis), 

point-on-line 

 

 

6 

 

 

Prismatic 

 

 

 

 

 

 

 

 

plane,  

line-on-plane 

 

 

7 

 

 

General 

 

 

 

 

 

 

 

plane,  

line-on-plane, 

point-on-line 

The observation made thus far about planar class can be 

extended to all the remaining six symmetry classes enumerated 

in Table 1 as follows. An unbounded right-circular cylinder (or 

any number of co-axial cylinders) has cylindrical symmetry 

because it remains invariant under rotation about its axis and 

translation along its axis; thus it has two degrees-of-freedom. A 

screw thread has helical symmetry with one-degree-of freedom; 

A 

B 

12 12 

12 

12 
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it remains invariant under a helical motion, which is a 

combination of translation along the axis and rotation about the 

axis at a rate defined by the pitch of the helix. A sphere (or any 

number of concentric spheres) has spherical symmetry with three 

degrees-of-freedom because it remains invariant under the action 

of the three independent components of rotation in 3D about its 

center. A right-circular cone (or a torus, or an hour-glass, etc) 

belongs to a revolute class with only one degree-of-freedom 

because it remains invariant under rotation about its axis. An oval 

shaped elliptic cylinder, for example, belongs to the prismatic 

class with only one degree-of-freedom because it remains 

invariant under translation along a ruling on its surface. Finally, 

a saddle shaped object, such as the one shown in the last row of 

Table 1, has no degree-of-freedom left because it cannot remain 

invariant under any motion; so it belongs to a general class. A 

general class can also be defined using datum targets. More 

extensive theoretical discussions of these classes of symmetry 

can be found in [17]. 

An important link between the notion of symmetry and 

datums is provided by the reference elements listed in the last 

column of Table 1. These reference elements, which consist of 

just points, lines, planes, and helices, have the same invariant 

property as the parent surface features. This is significant 

because there is an important theorem that establishes the general 

property that the relative positioning of any two geometrical 

objects is the same as the relative positioning of their respective 

reference elements [17]. Thus, the reference elements in the last 

column of Table 1 serve as the datums for the datums features, 

and this holds true for any arbitrary geometric shape. This also 

brings out a clear distinction between a datum feature and a 

datum; for example, a cylindrical surface may be a datum feature 

but its axis is the datum.  

Table 2. Three classes of continuous symmetry in 2D [16-17] 

 Symmetry Class 

Type 

Illustrative 

Curve Features 

Reference 

Element(s) 

 

1 

 

Linear 

 

 

 

line 

 

2 

 

Circular 

 

 

 

point 

 

3 

 

General 

 

 

 

line,  

point-on-line 

To complete the datum classification, Table 2 enumerates 

the three classes of continuous symmetry in 2D. These cases 

come in handy while establishing secondary datums. Note that 

the reference elements for the general class in the last row 

establish a full-fledged two-dimensional reference frame. 

The power of symmetry group classifications in defining all 

datum feature types in a compact manner was quickly seized 

upon by the ISO and ASME standards committees in their recent 

releases of standards that deal with datums [1, 4]. Table 3 

summarizes how these two standards development organizations 

have chosen to define the datum feature types in their standards. 

While the ISO standards emphasize the set of rigid motions that 

keep the surface feature invariant, the ASME standards 

emphasize the degrees of freedom that are constrained by the 

established datums on a work-piece. For example, ISO takes the 

view that a planar datum remains invariant under two 

translational degrees-of-freedom in the plane and one rotational 

degree-of-freedom about an axis perpendicular to the plane. 

However, ASME focuses on the fact that a planar datum 

established on any work-piece constrains the following degrees-

of-freedom of the work-piece: one translational degree-of-

freedom perpendicular to the plane and two rotational degrees-

of-freedom about two orthogonal axes on the plane. Even though 

ASME and ISO take complementary points of view on the 

degrees-of-freedom, the datum feature type classification still 

remains the same.   

Table 3. ASME [1] and ISO [4] standardized datum feature 

types. 

  

Symmetry 

Class Type 

ISO Invariant 

Classes 

(Kinematic 

Degrees-of-

Freedom) 

ASME Datum 

Features 

(Constrained 

Degrees-of-

Freedom) 

1 Planar Planar Planar 

Width 

2 Cylindrical Cylindrical Cylindrical 

3 Helical Helical (None)* 

4 Spherical Spherical Spherical 

5 Revolute Revolute Conical 

6 Prismatic Prismatic Linear Extruded 

Shape 

7 General Complex Complex 
*not explicitly type classified in the standard 

It is worth noting that the ASME standard separates single 

plane and two parallel planes (as width) even though they both 

fall under the same mathematical symmetry group (planar). Also, 

the ASME standard refers to revolute and prismatic classes as 

conical and linear extruded shape, respectively. These minor 

terminological variations from the ISO definitions may be 

attributed to simple engineering convenience and pose no major 

theoretical problems. Both ASME and ISO standards refer to the 

general symmetry group as ‘complex,’ not to be confused with 

mathematical analysis of geometry in the space involving 

complex numbers. Also, both ASME and ISO standards 

downplay the mathematically identified helical class because, in 
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practice, helical threads are handled by other standardized 

specifications [18] and only the axis of the helix plays any 

significant practical role as a datum.       

The compact classification of datum types, as shown in 

Table 3 and adopted by both ASME and ISO, will play an 

important role in a search for a unified mathematical datum 

fitting criterion described in Sections 3 and 4. But, before that, a 

brief examination of the special role played by ‘features of size’ 

in defining datums in ASME and ISO standards is in order. 

2.2 Features of size and datums 
Size plays an important role in industry and in standards 

[19]. In general, any feature that can be assigned a size 

dimension and tolerance can be called a feature of size. But 

standards reserve the designation of ‘feature of size’ to a limited 

number of features.  

The current ASME standard [1] defines two major types of 

features of size. The first is a regular feature of size: it can be a 

cylindrical surface, a spherical surface, a circular element, a set 

of two opposed parallel elements, or a set of two opposed parallel 

surfaces. The second is an irregular feature of size, which is 

broken down into the following two subtypes: (1) a feature or 

collection of features that may contain or be contained by an 

envelope that is a sphere, a cylinder, or a pair of parallel planes, 

(2) a feature or collection of features that may contain or 

contained by an envelope other than a sphere, a cylinder, or a pair 

of parallel planes. In any case, a feature of size falls under one of 

the symmetry classes enumerated in Tables 1, 2 and 3. Any 

feature of size can be used as a datum feature in two ways: either 

(1) regardless of material boundary (RMB), or (2) at maximum 

material boundary (MMB) or least material boundary (LMB). 

This paper focuses on the mathematical datum definitions at 

RMB. 

The ISO standards take a somewhat different view on 

features of size. In the recent ISO definition, a feature of size 

must satisfy two criteria: (1) it must belong to a one-parameter 

family of features, and (2) it must obey the monotonic 

containment property. The monotonic containment property 

refers to the fact that a feature with a larger parameter value (that 

is, size) should contain (or be contained in) the feature with a 

smaller parameter value (that is, size).  

With this general stipulation, ISO standards define two types 

of sizes: linear sizes and angular sizes. For example, a cylinder 

is a feature of size with a linear size. On the other hand, a cone 

is a feature of size with an angular size (e.g., its apex angle). Both 

cylinder and cone satisfy the two criteria mentioned above: each 

belongs to a one-parameter family of surfaces and each satisfies 

the monotonic containment property. Any ISO feature of size 

also belongs to a symmetry group enumerated in Tables 1, 2 and 

3. The notions of RMB, MMB, and LMB are also applicable in 

the ISO standards, albeit under different names. As stated earlier, 

this paper is concerned only with mathematical datum 

definitions at RMB. 

The prevalence of some of the common and popular features 

of size in ASME and ISO standards may be traced 

mathematically to the widespread use of quadric surfaces (that 

is, surfaces that are governed by second degree implicit 

equations) in industry. There is a remarkable classification 

theorem that states that all quadric surfaces can be classified 

under seventeen types, out of which twelve types correspond to 

surfaces in the real space (as opposed to the space involving 

complex numbers) [17]. Of these twelve, the popular ones used 

in industry that belong to one-parameter family of surfaces are 

listed in Table 4; these also satisfy the monotonic containment 

property. The non-degenerate quadrics in Table 4 are also known 

as ‘natural quadrics’ and are widely used, along with planes, in 

geometrical and solid modeling software systems.  

Table 4. Popular one-parameter families of real quadrics [17].  

 Surface Type Canonical 

Equation 

Parameter 

N
o

n
-d

eg
en

er
at

e 

q
u

ad
ri

cs
 

Sphere 𝑥2 + 𝑦2 + 𝑧2 = 𝑟2 𝑟 

Right-

circular  

cylinder 

𝑥2 + 𝑦2 = 𝑟2 𝑟 

Right-

circular cone 

𝑥2

𝑎2
+

𝑦2

𝑎2
−

𝑧2

𝑐2
= 0 

tan−1(𝑎
𝑐⁄ ) 

D
eg

en
er

at
e 

q
u

ad
ri

cs
 

Parallel 

planes 
𝑥2 = 𝑎2 𝑎 

Intersecting 

planes 

𝑥2

𝑎2
−

𝑦2

𝑏2
= 0 

tan−1(𝑏
𝑎⁄ ) 

To complete the classification, Table 5 presents the popular 

one-parameter family of real conics (that is, planar curves of the 

second degree) in 2D. These appear as two-dimensional features 

of size (both linear and angular) in the standards. 

Table 5. Popular one-parameter families of real conics [17].  

 Curve Type Canonical 

Equation 

Parameter 

N
o

n
-

d
eg

en
er

at
e 

co
n

ic
 

 

Circle 

 

𝑥2 + 𝑦2 = 𝑟2 

 

𝑟 

D
eg

en
er

at
e 

co
n

ic
s 

Parallel 

lines 
𝑥2 = 𝑎2 𝑎 

Intersecting 

lines 

𝑥2

𝑎2
−

𝑦2

𝑏2
= 0 

tan−1(𝑏
𝑎⁄ ) 
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In both ASME and ISO standards, features of size form only 

a subset of what can be specified as datum features. But the 

features of size play a special role in datum establishment 

because they can be specified with Ⓜ and Ⓛ modifiers to 

indicate when these datum features are used at MMB and LMB, 

respectively. As noted earlier, this paper does not deal with these 

modifiers, because datum feature simulators at MMB and LMB 

have fixed size values and can be handled by different means 

(e.g., using functional gages in the physical domain or soft gages 

in the digital domain). 

3. Physical and Digital Establishments of Datums 
In addition to standardizing the types of datums, the 

standards define how theoretical datums are established. The 

ASME standard [1] uses the notion of a ‘theoretical datum 

feature simulator’ to associate a surface of perfect form to a 

manufactured part feature that has an imperfect form. For 

example, as shown in Fig. 2(b), a mathematical plane serves as a 

theoretical datum feature simulator to establish a primary planar 

datum plane on a manufactured surface feature that may have 

irregularities and undulations. Similarly, in Fig. 3(b), a 

mathematical cylinder serves as a theoretical datum feature 

simulator on a manufactured surface feature with imperfect (that 

is, irregular) form; the axis of the mathematical cylinder then 

serves as the primary datum. Echoing the last column of Tables 

1 and 2, the ASME standard asserts that “datums are theoretically 

exact points, axes, lines, and planes.” 

The ISO standard [4] uses a slightly different terminology 

to define the same process for theoretical datum establishment. 

In the ISO parlance, an ‘associated integral feature’ is a 

mathematical surface of perfect form that is fitted to an 

‘extracted integral feature’ (which corresponds to a ‘nominal 

integral feature’) of a work-piece. The datum is then the ‘derived 

feature’ (e.g., an axis) of the associated integral feature. Without 

getting into the details of ISO terminology, suffice it to say that 

ASME’s ‘theoretical datum simulator’ and ISO’s ‘associated 

integral feature’ are equivalent, and they lead to the same 

theoretical datum definition. 

Theoretical datums defined by ASME and ISO can be 

established on manufactured parts using either physical devices 

as outlined in the following Section 3.1 or using digital means as 

described subsequently in Section 3.2.   

3.1 Physical datum establishment 
Physical datums on manufactured parts can be established 

using what the ASME standard calls ‘physical datum feature 

simulators,’ which are the physical counterparts to the ASME’s 

‘theoretical datum feature simulators’ or the ISO’s ‘associated 

integral features.’ For example, a surface plate can be used as a 

physical datum feature simulator for a planar datum feature 

depicted in Fig. 2(b). Similarly, a contracting chuck can be used 

as a physical datum feature simulator for a cylindrical datum 

feature shown in Fig. 3(b). 

The world of physical metrology is full of wonderful devices 

such as surface plates, angle blocks, opening and closing vises, 

expanding mandrels, and contracting chucks to establish 

physical datums. Even though such physical devices do not have 

surfaces of mathematically perfect form, they are supposed to be 

produced with such high quality that they can be used to establish 

datums in industrial practice while their small form deviations 

contribute only very small measurement uncertainty. 

Employing physical devices still requires some guidance on 

how they may be used to establish datums on manufactured 

parts. The ASME standard provides some tips for situations such 

as the one shown in Fig. 2. Let Q be the manufactured part in 

Fig. 2. The primary planar datum in Fig. 2(b) can be established 

by placing Q on a surface plate that serves as a physical datum 

feature simulator so that the surface plate contacts “a minimum 

of three points” on the manufactured part. An angle block that is 

perpendicular to the surface plate can serve as the secondary 

physical planar datum simulator in Fig. 2(b) by setting it up so 

that it contacts “a minimum of two points” on Q. Another angle 

block that is mutually perpendicular to the two physical devices 

can then serve the tertiary physical planar datum simulator (not 

shown in Fig. 2) by contacting “a minimum of one point” on Q. 

This process of establishing a mutually perpendicular planar 

datum system follows a ‘3-2-1 fixture principle,’ as it is known 

in the engineering folklore. It is well entrenched in industrial 

practice for locking down all six degrees of freedom of a 

manufactured part. 

The 3-2-1 fixture principle is also called the Kelvin principle 

[20]. There is another fixture principle known as the Maxwell 

principle, which is designated as ‘2-2-2’ to indicate that all six 

degrees of freedom of a part can be constrained when each of the 

three mutually orthogonal datum planes contacts a minimum of 

two points. This brings up an interesting question. How can a 

stable primary datum plane be physically established if not 

enough contact points can be found on a manufactured part using 

either the Kelvin or the Maxwell principle? Figure 4 illustrates 

such a situation with a two-dimensional example. 

 

 

 

Figure 4. Associating a planar datum D to a manufactured 

feature F.    

Even though it is drawn with some exaggeration for 

illustration, Fig. 4 presents the type of dilemma that a metrologist 

faces in establishing a physical datum. In the ASME standards 

[1, 2] this situation is described as a ‘rocking’ condition. Under 

the rocking condition, there may be a ‘set of candidate datums’ 

instead of just one datum D for a manufactured feature F. 

Recognizing the same problem, previous versions of ISO 

standards recommended ‘shimming’ to provide supports 

between F and D in Fig. 4 to ensure some stability for F relative 

to the datum D. Neither of the solutions is considered satisfactory 

F 

D 
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because both leave the datum establishment to the skills of the 

metrologist who serves as an inspection technician. 

The problem of rocking and non-uniqueness is not confined 

to planar datum establishment. Physical datum establishments 

for other datum features enumerated in Tables 1, 2 and 3 also 

encounter similar problems. One remedy to this problem is to 

come up with a good mathematical criterion to associate a unique 

perfect form surface to a datum feature of imperfect form. It turns 

out that there are several mathematical criteria, each of which 

has attempted to provide guidance to establishing physical 

datums as well as digital datums, as described next.          

3.2 Digital datum establishment 
Digital datum establishment depends on mathematical 

definitions and related computational techniques, based on a 

computable representation of datum features on manufactured 

parts. Only in the past few decades has such a computable 

representation of datum features became widely available, 

thanks largely to the rise of CMS and scanning devices. And the 

availability of cheap computing power, along with powerful 

software, has introduced digital datum establishment as a 

potential competitor, and complement, to physical datum 

establishment in industry. 

Any good mathematical definition of datums, whether it is 

for establishing physical datums or digital datums, starts with a 

fitting problem posed as an optimization problem. To set up the 

optimization problem with its objective function and constraints, 

consider a computable representation of a surface feature F on 

the boundary of a manufactured instance of a part and a 

corresponding mathematical surface S of perfect form, as shown 

in Fig. 5. Let q be any point on F and dA an elemental area around 

q. Also let d(q, S) be the perpendicular distance between p and S; 

it is also the shortest distance between p and S. While F is a 

bounded set, S can be unbounded. For example, S can be an 

unbounded plane or an unbounded cylinder. Also, F comes from 

a manufactured part; so there is an unambiguous notion of when 

S lies outside the material side of F.  

 

 

 

 

 

 

 

Figure 5. Notations for fitting a surface S to a feature F. 

It was mentioned that F has a computable representation. It 

means that F may be a collection of n points, represented as a set 
{𝑞1, 𝑞2, … , 𝑞𝑛} with each point 𝑞𝑖 having three coordinates that 

could be generated by a CMS. Then F is a finite set. In most 

applications, it is preferable to represent F as a continuum 

consisting of an infinite number of points. Then a computable 

representation of F may involve an interpolation (e.g., piece-

wise linear tessellation) of measured points from a CMS. 

The fitted surface S can be represented mathematically by 

the type of surface being fitted (e.g., plane, cylinder, sphere) 

along with its size and position parameters that may be 

represented as u = {𝑢1, 𝑢2, … , 𝑢𝑚}. In datum fitting problems, 

𝑚 ≪ 𝑛. That is, the number of unknown parameters in u 

associated with S is much smaller that the number of known 

discrete points on F. Fitting a surface S to F is then an 

optimization problem of minimizing a distance measure 𝐷(𝐹, 𝑆) 

subject to the constraint that S lies on or outside the material side 

of F; the output is the parameter set u. 

Among many choices for the distance measure 𝐷(𝐹, 𝑆), the 

ones using the Lp-norm have been popular in industrial 

applications. Under this norm, the optimization problem is posed 

as 

min
𝒖

[
1

𝐴
∫ |𝑑(𝑞, 𝑆)|𝑝𝑑𝐴

 

𝐹

]

1
𝑝⁄

  
 

(1) 

 

subject to the constraint that S lies on or outside the material side 

of F. In Eq. (1), A stands for the area of the surface feature F. If 

the feature F is represented only discretely using uniform 

sampling, then the integration in Eq. (1) is replaced by a 

summation, resulting in the following optimization problem that 

uses the lp-norm: 

  

min
𝒖

[
1

𝑛
∑ |𝑑(𝑞𝑖 , 𝑆)|𝑝

𝑛

𝑖=1
]

1
𝑝⁄

 
 

(2) 

 

still subject to the constraint that S lies on or outside the material 

side of F. Three popular choices of p are 1,2, and ∞, and these 

three cases are discussed below in that order. 

Case 𝑝 = 1. Under this norm, the fitted surface S minimizes the 

integral (or sum) of the distances of the points on F to S (with the 

aforementioned material constraint). This problem, when a 

planar surface S is fitted to F, has been studied and solved 

recently [21-23]. It has been shown that minimization under the 

L1-norm also minimizes the distance of the centroid of F to the 

planar datum S. This property is favored by engineers who seek 

mechanical stability in establishing datums  

In particular, the advantage of the L1-norm in establishing a 

planar datum system is that (in the discrete case) a primary planar 

datum will always contact a minimum of three points, a 

secondary planar datum will always contact a minimum of two 

points, and a tertiary planar datum will contact one point. Thus 

the ‘3-2-1 Kelvin fixture’ principle will be observed, giving this 

F 

S 
dA 

q 

d(q, S) 
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digital datum system a seemingly strong advantage of 

mechanical stability. 

There is, however, a problem of numerical stability with the 

L1-norm that is illustrated in Fig. 6 using a simple 2D example. 

Consider a V-shaped manufactured feature F that is supposed to 

be flat, and a linear datum D fitted to it. Let s1 and s2 be the 

lengths of the two arms of F as indicated in Fig. 6. If 𝑠1 > 𝑠2 

even by a very small amount, which can occur in numerical 

computations, the datum D will be aligned with the left arm of F 

as shown in Fig. 6(a). On the other hand, if the reverse were to 

occur and 𝑠1 < 𝑠2 by a very small amount, then the datum D will 

flip to the right arm of F as shown in Fig. 6(b). This type of flip-

flop will occur even if the left and right arms of F are almost 

collinear (that is, their included angle differs from 180° by a 

very small amount). 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 6. Illustration of numerical stability issues with the L1-

norm. 

Figure 6 illustrates that seeking mechanical stability is not 

always the right objective in establishing datums. An engineer 

might be quite happy with a datum D that contacts F at just one 

point in Fig. 6 (at the junction of the two arms), as long as D has 

numerical stability. That is, if any small change in F results in 

only a small change in D with respect to F. In Section 4, it will 

be shown that a constrained least-squares fitting can accomplish 

this.    

Case 𝑝 = 2. This is the well-known least-squares norm, also 

known as the Gaussian norm. In particular, it is called the 

‘orthogonal least-squares’ or ‘total least-squares’ fit, since the 

distances of the points in F to S are measured perpendicular to S. 

Unconstrained least-squares fitting is very popular with 

numerical analysts and software developers in the field of 

computational coordinate metrology [24-27]. 

CMS vendors have implemented and used unconstrained 

least-squares fitting to discrete set of points, as defined in Eq. 

(2), for various geometric elements listed in Tables 1, 2 and 3, 

for a long time. The objective function is relatively simple, 

yielding a closed form expression for the gradient used in search 

algorithms. Such fits also have the advantage of numerical 

stability (that is, a small change in the input representation of F 

has only a small change in the output representation of S).  

In spite of the popularity of unconstrained least-squares 

fitting, it has remained only in the background in datum 

establishment. This is because digital datum establishment 

typically requires the fitted surface to lie outside the material. 

The constrained least-squares fitting, which has been explored 

only recently, enforces the constraint that the fitted surface lies 

outside the material and it will be described in some detail in 

Section 4. It should be noted that constrained least-squares fitting 

is different from an unconstrained fit that has been shifted to lie 

just outside the material.     

Case 𝑝 = ∞. This norm leads to minimax fitting. That is, 

minimizing the maximum deviation of points in F to S while 

maintaining the constraint that S lies to the outside of the material 

side of F. A class of problems that come under minimum-zone 

fitting can be posed as problems that have the L∞-norm in the 

objective function, but without the constraint. The minimum-

zone fitting is also known as Chebyshev fitting [28, 29]. 

Computational solutions to these unconstrained L∞-norm 

problems are very useful for conformance assessment to form 

tolerancing problems, such as straightness, flatness, roundness, 

and cylindricity. Attempts have been made to use one of the 

surfaces (that lies outside the material) in the minimum-zone as 

the fitted surface associated with that feature for datum 

establishment. But these attempts have not met with much 

success because other fitting criteria described below have found 

favors in industry and standards.  

Before looking at the constrained least-squares in detail in 

Section 4, it is useful to consider other fits, such as maximum 

inscribing and minimum circumscribing fitting of geometrical 

elements such as circles, parallel lines, parallel planes, spheres, 

and cylinders. (Interestingly, the maximum inscribing and 

minimum circumscribing fittings are also known as Chebyshev 

fittings [28].) The popularity of this type of fitting in standards 

stems from the fact that the minimum circumscribing and 

maximum inscribing fits can be achieved using the likes of 

contracting chucks and expanding mandrels when establishing 

physical datums. Hence maximum inscribing and minimum 

circumscribing fittings have been the default criteria in ASME 

and ISO standards for establishing datums involving circles, 

cylinders, spheres, and parallel planes.  

 

 

 

 

 

(a) 

 

 

 

 

(b) 

Figure 7. An illustration of the non-uniqueness and numerical 

stability issues with minimum circumscribing parallel lines 

fitting.  
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These fits (with the appropriate constraint) are considerably 

more complex than the fitting algorithms associated with the L2-

norm. In addition, there are some numerical stability issues with 

these fits for datums, as illustrated in Fig. 7 for a 2D problem. 

Consider the problem of establishing a planar datum using 

minimum circumscribing parallel planes (mimicking closing 

vises in the physical world) for a slab. The object in Fig. 7 is 

supposed to be a slab with nominally planar, parallel faces at the 

top and the bottom. But the manufactured part, as depicted in 

Fig. 7, has a V-shaped crown at the top and bottom faces of the 

slab. A minimal-separation fit can lead to non-unique solutions 

as seen in Figs. 7(a) and 7(b). With small numerical changes in 

the top and bottom faces of the slab, the median line indicated as 

the datum in Fig. 7 can flip-flop between Fig. 7(a) to Fig. 7(b), 

similar to the case seen in Fig. 6. 

The maximum inscribing cylinders and spheres (mimicking 

expanding mandrels in the physical world) also run into a similar 

problem, as illustrated with maximum inscribing circles in Fig. 

8. Consider a circular hole that has been manufactured as a 

combination two identical circles, shown dotted in Fig. 8. The 

maximum inscribing circle problem for this hole does not have a 

unique solution, because each of the dotted circles is a maximum 

inscribing circle having different centers as shown. This also 

illustrates a numerical stability problem. If one of the circles is 

slightly larger than the other, the fit will choose the center of that 

circle as the datum. This can lead to an undesirable flip-flop 

situation for digital datum establishment.     

 

 

 

 

 

Figure 8. An illustration of the non-uniqueness and numerical 

stability issues with maximum inscribing circle fitting 

(Chebyshev fitting). 

The non-uniqueness and stability problems with maximum 

inscribing and minimum circumscribing fits are not confined to 

digital datum establishment. As illustrated in Figs. 7 and 8, 

physical datum establishment employing closing vises and 

expanding mandrels will also face similar problems. In the 

physical world, the solution to the problem is left to the skills of 

the operator of these devices in the inspection shop. 

In addition to the problems with traditional features of size 

such as circles, parallel planes, cylinders, and spheres, the 

maximum inscribing and minimum circumscribing fittings do 

not generalize to other features enumerated in Tables 1, 2 and 3. 

For example, solid wedges and angular slots (which are angular 

features of size that belong to the prismatic class) cannot be 

covered by these criteria. Also, solid and hollow cones (which 

are angular features of size that belong to the revolute class) are 

not covered by the maximum inscribing and minimum 

circumscribing optimization criteria.          

4. Constrained Least-squares Fitting 
Experience with various physical and digital datum 

establishments, as described in Section 3, has recently focused 

the attention of ASME and ISO standards committees to seek one 

fitting criterion that can be uniformly applied (1) to all the datum 

feature types enumerated in Tables 1, 2 and 3, and (2) to both 

physical and digital datum establishments with mechanical as 

well as numerical stability. It is clear from the discussions of 

Section 3 that this is a challenging task, and some compromise 

has to be made. 

 

 

 

 

 

(a) 

 

 

 

 

 

(b) 

Figure 9. Illustration of linear datum fitting using constrained 

least-squares. 

The constrained least-squares fitting seems to offer this 

compromise. There is considerable experience in numerical 

analysis and software development in the theory and application 

of unconstrained least-squares fitting for all types of geometrical 

elements [24-27]. However, the problem of constrained least-

squares fitting has been attacked only recently [30-34]. The early 

results are encouraging, as illustrated in Fig. 9 for simple 

examples in 2D. Figure 9(a) shows how a linear datum D will 

make a mechanically stable contact with the long arm of the 

feature F, even if the two arms shown not flush with D are of 

unequal lengths (to a reasonable extent). This full contact of the 

constrained least-squares is not obtained by using a shifted least-

squares approach. In Fig. 9(b), the datum D contacts the junction 

of the two arms of F; this fitting is numerically stable because 

small changes in F will result in only small changes in D. It is 

worth comparing Fig. 9(b) with Fig. 6.  

 

 

 

Figure 10. Illustration of datum fitting for a slab in 2D using 

constrained least-squares. 
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Figure 10 shows the result of constrained least-squares 

fitting to establish the digital datum for a slab using a 2D 

example. It leads to a unique and numerically stable solution, and 

avoids the type of flip-flop problem seen in Fig. 7 with 

Chebyshev fitting. More technical information on the 

constrained least-squares fitting for linear datum features can be 

found in [30, 31, 34]. 

The same constrained least-squares criterion can be applied 

to non-linear datum features as well [32, 33]. Figure 11 illustrates 

the constrained least-squares fitting of a circle to the same 

problem presented in Fig. 8. Such a fitting has uniqueness and 

numerical stability, and will not lead to the flip-flop situation 

encountered with Chebyshev fitting (in this case, maximum 

inscribing circle) of Fig. 8. As shown in [32], in many practical 

cases, the constrained least-squares fits similar to the one shown 

in Fig. 11 differ from a maximum inscribed circles (similar to the 

one shown in Fig. 8) by only a negligible amount. Further, [32] 

shows that the constrained least-squares fitting is preferable to 

the shifted least-squares fitting. 

The initial reaction from the ASME and ISO standards 

committees has been very positive in favor of the constrained 

least-square fitting. It seems to offer the best compromise 

between mechanical stability and numerical stability for 

establishing physical and digital datums. It is also extendable to 

all the types of datum features enumerated in Tables 1, 2 and 3. 

 

 

 

 

 

Figure 11. Illustration of constrained least-squares fitting to a 

non-linear datum feature. 

To provide input to the standards committees and to enable 

efficient software implementation, a detailed research was 

initiated to study the structure and behavior of constrained least-

squares fitting. It has been proved that the objective function for 

constrained least-squares fitting of planes and parallel planes is 

convex, and that the contact conditions for the optimal solution 

have a compact classification [34]. The optimality conditions for 

the constrained least-squares fitting of circles, cylinders, and 

spheres have also been proved [33]. It has been shown that the 

optimal circle, cylinder, or sphere must contact at least two 

points in the input set of feature F. Table 6 provides a snapshot 

of the coverage of current research on the convexity and 

optimality conditions (in the form of combinatorial 

characterization) for constrained least-squares fitting to establish 

datums. Using these results, major CMS vendors are beginning 

to implement and test their software for constrained least-squares 

fitting.     

A careful study of Tables 1 through 6 reveals that there are 

still several research issues that remain to be explored. A 

combinatorial characterization of the optimality conditions (that 

is, what is the minimum number of points of F that will contact 

S) for the revolute, prismatic (beyond intersecting planes), and 

complex classes will be helpful to enable efficient 

implementations of the constrained least-squares fitting. Other 

than the cases that involve planes (single planes, parallel planes, 

and intersecting planes), characterizing the optimum solution 

using the constrained least-squares fitting to a continuous set (as 

opposed to a discrete set) of points remains an open problem. 

Open standards development organizations such as ASME 

and ISO do not concern themselves with algorithmic issues. 

They focus only on the definition of the optimization problem 

with its objective function and constraints. Sometimes, national 

metrology research laboratories in the USA and Europe develop 

research software (that is correct but not necessarily fast) to test 

the industrial solutions to the optimization problems. But it is left 

to the private sector to come up with efficient implementations 

of algorithms to solve these optimization problems, and compete 

in the market place. The research community at large can and 

should undertake detailed algorithmic studies on constrained 

least-squares fitting to assist industry in this effort. The arrival of 

cheap Graphics Processing Units (GPUs) may dramatically 

improve the performance of industrial software to establish 

digital datums based on constrained least-squares from point 

clouds. 

Table 6. Coverage of current research on constrained least-

squares fitting. 

Datum 

Feature 

Symmetry 

Group 

Feature of 

Size (RMB) 

References 

Line Linear (2D) No  

 

 

 

 

[30, 31, 

34] 

Two parallel 

Lines 

Linear (2D) Linear size 

Two 

intersecting 

Lines 

 

General (2D) 

 

Angular size* 

Plane Planar No 

Two parallel 

planes 

Planar Linear size 

Two 

intersecting 

planes 

 

Prismatic 

 

Angular size* 

 

Circle Circular (2D) Linear size  

[32, 33] Cylinder Cylindrical Linear size 

Sphere Spherical Linear size 

*ISO terminology 

5. Summary and Concluding Remarks              
This paper described recent efforts in ASME and ISO 

standards committees to come up with a new mathematical 
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definition of datums. A definition based on the constrained least-

squares fitting criterion has been found to be the most promising 

mathematical definition to cover all the datum feature types 

defined by the standards and the best compromise to support both 

physical and digital datum establishments. The major 

contribution of this paper is to bring these developments to the 

attention of the research community, and to encourage further 

mathematical and algorithmic research to enable efficient 

software development. As manufacturing becomes more and 

more digitized, such software will play an increasingly dominant 

role in the advancement of manufacturing.   
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