

PTB Certification of ZEISS CALYPSO 2021

ZEISS CALYPSO Version 6.8.00 was tested by the Physikalisch-Technischen Bundesanstalt in Braunschweig (PTB) in accordance with the enclosed certificates "Evaluation software based on leastsquares method for coordinate measuring machines" and "Evaluation software based on minimumzone method for coordinate measuring machines". The test procedures performed for certification by the PTB are an identical part of the release tests for ZEISS CALYPSO.

Release testing is performed before each release of a major release and its service packs to ensure the accuracy of the program for all versions. This ensures that version ZEISS CALYPSO 2021 (7.2.00) and the associated service packs meet the quality standard of PTB.

All deviations of the algorithms under test were below the maximum permissible errors for all quality characteristics.1

Oberkochen, June 16th, 2021

Carl Zeiss Industrial Metrology

Development Software Applications

i.V. Lutz Karras

Software Process Management

i.V. Philipp Schach

Email: info.metrology.de@zeiss.com

Roberto Deger

Prüfbericht

Test Report

Gegenstand: Auswertesoftware nach Gauß für Koordinatenmessgeräte

Object: Evaluation software based on least-squares method for coordinate

measuring machines

Hersteller: Carl Zeiss Industrielle Messtechnik GmbH

Manufacturer:

Typ: Calypso 6.8.00 0

Type:

Auftraggeber: Carl Zeiss Industrielle Messtechnik GmbH

Applicant:

Ergebnis: bestanden

Result: Die maximalen Abweichungen sind kleiner als 0.10 µm und 0.10 µrad

nassed

The maximum deviation is less than 0.10 μ m and 0.10 μ rad

Anzahl der Seiten:

zani der Seiten:

Number of pages:

Prozess ID: FZZ0GIR6SLY4RQ7N

Process ID:

Geschäftszeichen: PTB-5.32-4097754

Reference No.:

Datum der Prüfung: 2019-09-17

Date of test:

Im Auftrag

On behalf of PTB

On behalf of PTB

Siege

Dr.-Ing. Prof. h. c. Frank Härtig

Direktor und Professor

7

Prüfbericht ohne Unterschrift und Siegel haben keine Gültigkeit. Dieser Prüfbericht darf nur unverändert weiterverbreitet werden.

Auszüge bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Test Reports without signature and seal are not valid. This Test Report may not be reproduced other than in full. Extracts may be taken only with the permisson of the Physikalisch-Technische Bundesanstalt.

Dipl.-Ing. Matthias Franke

Seite 2 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N Page 2 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N

Aufgabe

Geprüft wurden Auswertealgorithmen zur Besteinpassung von Formelementen nach der "Methode der kleinsten Abweichungsquadratsumme". Dieser Test wurde durch Vergleich von berechneten Ergebnissen mit Referenzergebnissen der PTB durchgeführt.

Randbedingungen

Getestet wurden Auswertealgorithmen für die Formelemente Gerade, Ebene, Kreis, Zylinder, Kugel und Kegel. Die Parameter dieser Formelemente wurden nach der Gauß'schen "Methode der kleinsten Abweichungsquadratsumme" bestimmt.

Die Formelemente werden durch Datensätze repräsentiert, die aus Punkten im Raum bestehen. Diese Punkte (zwischen 8 und 50 je Datensatz) sind von der PTB durch rechnerische Simulation von Koordinatenmessungen generiert worden. Dabei wurden die Punkte unregelmäßig auf Segmenten der Formelemente verteilt. Den exakten Geometrien wurden zufällige und systematische Abweichungen zwischen 20 µm und 50 µm überlagert. Außerdem waren die Formelemente in unterschiedlichen Lagen und Orientierungen angeordnet.

Durchführung

Dem Auftraggeber wurden die simulierten Daten der o. a. Formelemente elektronisch übermittelt. Der gesamte Test umfasste 44 Datensätze, je Formelement 4 bis 12. Diese Datensätze wurden gemäß Erklärung des Auftraggebers von der oben näher bezeichneten Auswertesoftware so ausgewertet, als seien sie von einem Koordinatenmessgerät erzeugt worden. Die von dem Auftraggeber ermittelten Parameter wurden der PTB mitgeteilt und mit deren Referenzwerten verglichen. Zur Beurteilung der Software sind die sich aus dem Vergleich ergebenden Abweichungen den maximal zulässigen Fehlern (MPE) für 4 verschiedene Kenngrößen gegenübergestellt worden.

Ergebnisse

Die Abweichungen der getesteten Algorithmen befanden sich für alle Kenngrößen innerhalb der maximal zulässigen Fehlergrenzen (MPE).

Kenngröße	Einheit	MPE
Richtung	μrad	0.10
Lage	μm	0.10
Маß	μm	0.10
Winkel	μrad	0.10

Seite 3 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N Page 3 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N

Summary

The numerical accuracy of algorithms for computing "Gaussian associated features" has been tested. The test was performed by comparing computed results with reference results provided by the PTB for the same set of data.

Scope

The basic features straight line, plane, circle, cylinder, sphere and cone have been tested. The reference results which are the parameters of the features were calculated using the Gaussian "method of least squares".

The features are represented by data sets, defining points in space. These points were generated by the PTB (between 8 and 50 per set) by computational simulation of coordinate measurements. The points are distributed randomly on segments of the features. Systematic and random deviations between 20 µm and 50 µm have been superimposed on the exact geometries. The features have also been tested in different locations and orientations.

Procedure

The simulated data sets, representing the features, have been transmitted to the applicant electronically. The entire test consisted of 44 sets of data, between 4 and 12 data sets for each kind of feature. According to declaration by the applicant, the data sets have been evaluated in the same way as data from a CMM would be, using the software specified above. The results have been transmitted by the applicant to the PTB where they have been compared with the reference values. For the assessment of the software, the calculated deviations have been compared with the maximum permissible errors (MPE) for 4 different quality characteristics.

Results

All deviations of the algorithms under test were below the maximum permissible errors (MPE) for all quality characteristics.

Characteristic variable	Unit	MPE
Orientation	μrad	0.10
Location	μm	0.10
Size	μm	0.10
Angle	μrad	0.10

Seite 4 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N Page 4 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, FZZ0GIR6SLY4RQ7N

Die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und Berlin ist das nationale Metrologieinstitut und die technische Oberbehörde der Bundesrepublik Deutschland für das Messwesen. Die PTB gehört zum Geschäftsbereich des Bundesministeriums für Wirtschaft und Energie. Sie erfüllt die Anforderungen an Kalibrier- und Prüflaboratorien auf der Grundlage der DIN EN ISO/IEC 17025. Zentrale Aufgabe der PTB ist es, die gesetzlichen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI) darzustellen, zu bewahren und weiterzugeben. Die PTB steht damit an oberster Stelle der metrologischen Hierarchie in Deutschland. Die Kalibarierscheine der PTB dokumentieren eine auf nationale Normale rückgeführte Kalibrierung. Zur Sicherstellung der weltweiten Einheitlichkeit der Maßeinheiten arbeitet die PTB mit anderen nationalen metrologischen Instituten auf regionaler europäischer Ebene in EURAMET und auf internationaler Ebene im Rahmen der Meterkonvention zusammen. Dieses Ziel wird durch einen intensiven Austausch von Forschungsergebnissen und durch umfangreiche internationale Vergleichsmessungen erreicht.

The Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig and Berlin is the National Metrology Institute and the supreme technical authority of the Federal Republic of Germany for metrology. The PTB comes under the auspices of the Federal Ministry of Economics and Energy. It meets the requirements for calibration and testing laboratories as defined in DIN EN ISO/IEC 17025. The central task of PTB is to realize, to maintain and to disseminate the legal units in compliance with the International System of Units (SI). PTB thus is at the top of the metrological hierarchy in Germany. The calibration certificates issued by PTB document a calibration traceable to national measurement standards. PTB cooperates with other national metrology institutes - at the regional European level within EURAMET and at the international level within the framework of the Metre Convention - with the aim of ensuring the worldwide coherence of the measurement units. This aim is achieved by an intensive exchange of the results of research work and by comprehensive international comparison measurements.

Priifbericht

Test Report

Gegenstand:

Auswertesoftware nach Tschebyscheff für Koordinatenmessgeräte

Object:

Evaluation software based on minimum-zone method for

coordinate measuring machines

Hersteller:

Carl Zeiss Industrielle Messtechnik GmbH

Manufacturer:

Typ: Type:

Calypso 6.8.00 0

Auftraggeber:

Carl Zeiss Industrielle Messtechnik GmbH

Applicant:

Ergebnis:

bestanden

Result:

Die maximalen Abweichungen sind kleiner als 0.10 µm und 0.10 µrad

The maximum deviation is less than $0.10~\mu m$ and $0.10~\mu rad$

Anzahl der Seiten:

4

Number of pages:

Prozess ID:

YOR9MTHOODZ6G68Y

Process ID:

Geschäftszeichen:

PTB-5.32-4097754

Reference No.:

Datum der Prüfung:

2019-09-17

Date of test:

Im Auftrag On behalf of PTB Braunschweig 2019

Im Auftrag On behalf of PTB

Siege

Dr.-Ing. Prof. h. c. Frank Härtig

Direktor und Professor

Dipl.-Ing. Matthias Franke

Prüfbericht ohne Unterschrift und Siegel haben keine Gültigkeit. Dieser Prüfbericht darf nur unverändert weiterverbreitet werden. Auszüge bedürfen der Genehmigung der Physikalisch-Technischen Bundesanstalt.

Test Reports without signature and seal are not valid. This Test Report may not be reproduced other than in full. Extracts may be taken only with the permisson of the Physikalisch-Technische Bundesanstalt.

Seite 2 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y Page 2 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y

Aufgabe

Geprüft wurden Auswertealgorithmen zur Besteinpassung von Formelementen nach der "Methode der Minimierung der größten Abweichungen". Dieser Test wurde durch Vergleich von berechneten Ergebnissen mit Referenzergebnissen der PTB durchgeführt.

Randbedingungen

Getestet wurden Auswertealgorithmen für die Formelemente 2D Gerade, Ebene, 2D Kreis, Kugel und Zylinder. Die Parameter dieser Formelemente wurden nach der Minimum-Zone "Methode der Minimierung der größten Abweichungen" bestimmt.

Die Formelemente werden durch Datensätze repräsentiert, die aus Punkten im Raum bestehen. Diese Punkte (zwischen 10 und 631 je Datensatz) sind von der PTB durch rechnerische Simulation von Koordinatenmessungen generiert worden. Dabei wurden die Punkte unregelmäßig auf Segmenten der Formelemente verteilt. Den exakten Geometrien wurden zufällige und systematische Abweichungen zwischen 1 µm und 90 µm überlagert. Außerdem waren die Formelemente in unterschiedlichen Lagen und Orientierungen angeordnet.

Durchführung

Dem Auftraggeber wurden die simulierten Daten der o. a. Formelemente elektronisch übermittelt. Der gesamte Test umfasste 50 Datensätze, je Formelement 8 bis 14. Diese Datensätze wurden gemäß Erklärung des Auftraggebers von der oben näher bezeichneten Auswertesoftware so ausgewertet, als seien sie von einem Koordinatenmessgerät erzeugt worden. Die von dem Auftraggeber ermittelten Parameter wurden der PTB mitgeteilt und mit deren Referenzwerten verglichen. Zur Beurteilung der Software sind die sich aus dem Vergleich ergebenden Abweichungen den maximal zulässigen Fehlern (MPE) für 5 verschiedene Kenngrößen gegenübergestellt worden.

Ergebnisse

Die Abweichungen der getesteten Algorithmen befanden sich für alle Kenngrößen innerhalb der maximal zulässigen Fehlergrenzen (MPE).

Kenngröße	Einheit	MPE
Richtung	μrad	0.10
Lage	μm	0.10
Maß	μm	0.10
Form- abweichung	μm	0.01

Seite 3 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y Page 3 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y

Summary

The numerical accuracy of algorithms for computing "Chebyshev associated features" has been tested. The test was performed by comparing computed results with reference results provided by the PTB for the same set of data.

Scope

The basic features straight line 2D, plane, circle 2D, sphere and cylinder have been tested. The reference results which are the parameters of the features were calculated using the Minimum-Zone "method of minimizing the maximum distance".

The features are represented by data sets, defining points in space. These points were generated by the PTB (between 10 and 631 per set) by computational simulation of coordinate measurements. The points are distributed randomly on segments of the features. Systematic and random deviations between 1 μ m and 90 μ m have been superimposed on the exact geometries. The features have also been tested in different locations and orientations.

Procedure

The simulated data sets, representing the features, have been transmitted to the applicant electronically. The entire test consisted of 50 sets of data, between 8 and 14 data sets for each kind of feature. According to declaration by the applicant, the data sets have been evaluated in the same way as data from a CMM would be, using the software specified above. The results have been transmitted by the applicant to the PTB where they have been compared with the reference values. For the assessment of the software, the calculated deviations have been compared with the maximum permissible errors (MPE) for 5 different quality characteristics.

Results

All deviations of the algorithms under test were below the maximum permissible errors (MPE) for all quality characteristics.

Characteristic variable	Unit	MPE
Orientation	μrad	0.10
Location	μm	0.10
Size	μm	0.10
Form Deviation	μm	0.01

Seite 4 zum Prüfbericht vom 2019-09-17, Gesch.-Z.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y Page 4 of the Test Report dated 2019-09-17, Ref. No.: PTB-5.32-4097754, YOR9MTHOODZ6G68Y

Die Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig und Berlin ist das nationale Metrologieinstitut und die technische Oberbehörde der Bundesrepublik Deutschland für das Messwesen. Die PTB gehört zum Geschäftsbereich des Bundesministeriums für Wirtschaft und Energie. Sie erfüllt die Anforderungen an Kalibrier- und Prüflaboratorien auf der Grundlage der DIN EN ISO/IEC 17025. Zentrale Aufgabe der PTB ist es, die gesetzlichen Einheiten in Übereinstimmung mit dem Internationalen Einheitensystem (SI) darzustellen, zu bewahren und weiterzugeben. Die PTB steht damit an oberster Stelle der metrologischen Hierarchie in Deutschland. Die Kalibarierscheine der PTB dokumentieren eine auf nationale Normale rückgeführte Kalibrierung. Zur Sicherstellung der weltweiten Einheitlichkeit der Maßeinheiten arbeitet die PTB mit anderen nationalen metrologischen Instituten auf regionaler europäischer Ebene in EURAMET und auf internationaler Ebene im Rahmen der Meterkonvention zusammen. Dieses Ziel wird durch einen intensiven Austausch von Forschungsergebnissen und durch umfangreiche internationale Vergleichsmessungen erreicht.

The Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig and Berlin is the National Metrology Institute and the supreme technical authority of the Federal Republic of Germany for metrology. The PTB comes under the auspices of the Federal Ministry of Economics and Energy. It meets the requirements for calibration and testing laboratories as defined in DIN EN ISO/IEC 17025. The central task of PTB is to realize, to maintain and to disseminate the legal units in compliance with the International System of Units (SI). PTB thus is at the top of the metrological hierarchy in Germany. The calibration certificates issued by PTB document a calibration traceable to national measurement standards. PTB cooperates with other national metrology institutes - at the regional European level within EURAMET and at the international level within the framework of the Metre Convention - with the aim of ensuring the worldwide coherence of the measurement units. This aim is achieved by an intensive exchange of the results of research work and by comprehensive international comparison measurements.