Alignments

There are several types of alignments.

Standard Alignment 3d Best Fit Alignment RPS Alignment P6 Alignment

Alignments

In order for an alignment to be valid it must restrain all 6 degrees of freedom.

Translational Freedom 1. Along X Axis 2. Along Y Axis 3. Along Z Axis Rotational Freedom 4. Around X Axis 5. Around Y Axis 6. Around Z Axis

Alignments

The simplest example of restraining the 6 degrees of freedom is the 3-2-1 rule.

A 3 point feature (typically a plane) is used to restrain 2 degrees of rotational freedom and one degree of translational freedom.

A 2 point feature (typically a line) is used to restrain one degree of rotational freedom and one degree of translational freedom.
A 1 point feature (typically a hole) is used to restrain the last degree of rotational freedom and

one degree of translational freedom.

Alignments are typically used for 2 reasons.

To tell Calypso where your part is located.

To set alignment of coordinates for evaluating a measurement.

2

Calypso will navigate relative to your base alignment.

There are 4 options for creating a Base Alignment.

Standard Method
 RPS Method

3. 3D Best Fit Method4. P6 Method

Constrains 2 degrees of rotational freedom

Constrains 1 degrees of rotational freedom

Constrains 1 degrees of Translational freedom

Constrains 1 degrees of Translational freedom

Constrains 1 degrees of Translational freedom

Alignments Standard Method

🚍 Base Alig	inment	<u>د</u>	<
¢z ,	Alignments-BS	Special)
× [Alignments	Comment]
*	Spatial Rotation		
	Planar Rotation]
	X Origin		
	Y Origin		
	Z Origin		
 Manual Execute D ✓ Automa ✓ Set bas 	Alignment During Run As: tic Measurement se alignment to zero	Execute Manual Run Now	

Alignments RPS Method

e o use Align	inche (111 3 321							
∮² RPS	File	Name					Spec	ial	
×	Alig	nments				C	Comn	nent	
									_
	Sele	ct Features			Select Refer	ence	s		
Feature		Reference	Nominal X	Nominal Y	Nominal Z	х	Y	Z	
									~
<								>	
RPS Evalua	ation	Туре 💿	RPS 321	O RI	PS Freeform				
🗌 Manual A	lignn	nent			Execute				
Execute Du	ring I	Run As:		〕〕〕	Manual F	Run			
Set base	aligr	asurement iment to zero)		Now				
🗌 Lоор	1	I 🗧 💆							_
ОК		Reset							

An RPS alignment will require 6 single point features. 3 features will restrain one direction, 2 will restrain another and 1 will restrain the last direction

In this way none of the alignment features will conflict with another they represent an exact nominal location/orientation on your work piece that other measurements will be taken from.

Alignments 3D Best Fit Method

📴 Base Alignn	nent - 3D Best Fit				×
∮² 3d	File Name				Special
K	Alignments				Comment
Select Features Select References			eferences		
Feature	Reference	Nom	inal X	Nominal	Y Nominal Z 🖂
K					×
Best fit o	n CAD model				
☐ Manual A Execute Dur ✓ Automatic	lignment 'ing Run As: : Measurement	n		E M	xecute Ianual Run ow

A 3d best fit requires a series of single point features which may conflict with each other in order to find a best fit averaging alignment

Alignments P6 Method

📴 Base Align	iment - P	⁹ 6 Alignment				×
∳² P6	File Na	ame				Special
	Alignr	nents				Comment
	Select	t Features			Select Refer	ences
Feature	F	Reference	Nominal X	Nominal Y	Nominal Z	X Y Z 🖂
ক্র						<u>~</u>
	Alianme	ant				Z
Execute Du	ring Ru	ın As:		Ē	Execute	Run
🗹 Automati 🔽 Set base	ic Meas : alignп	surement nent to zero	1		Now	
Loop	1	÷ 💯				
OK	R	eset				

A P6 alignment is an alignment that must have only 3 single point features. A common example of this alignment is tooling balls. Often a fixture will have a set of 3 tooling balls with offset coordinates so the fixture may be aligned from them.

Navigation

Calypso navigates around your part and to each feature relative to the base alignment.

This means that when choosing your alignment features you should consider how stable the location and orientation of your features will be.

You should also make your evaluation of these features as stable as possible so your measurement strategy will be more consistent.

Navigation

There are 2 ways to make an alignment more stable.

1. Select evaluation settings that provide the best repeatability.

2. Loop the Base alignment to control the Delta value of your Base Alignment.

Evaluation Settings

In most situations the feature evaluation settings should be LSQ.

Filter and outlier elimination should be normal to your process.

These settings will produce the most consistency in your base alignment.

Delta Value

The Delta value is a measurement of how much your coordinate system has shifted from one measurement of the base alignment to the next.

This shift is the result of data points being taken in slightly different locations each time your alignment is looped.

Delta Value

To loop your base alignment simply select the loop option from the appropriate window.

	⊑ Load, Create Or C	Change Base Alignment	×
	Base Alignment	Start Alignment	
	⊖ Create a nev	⊮ base alignment	
	Standard Met	thod 🗠	
	or		
	⊙ Change curr	ent base alignment	
	or		
	🔿 Load a save	d base alignment	
	Alignments	~	
			-
í		Loop	
		OK Cancel	

Delta Value Insert a loop	
Start End Step Insert Delete	
Nest Level	
Break Condition OK Cancel Help	
	The second s

The start value is step where the loop will begin.

The end value is step where the loop will end and your program will continue. The step value defines how many iterations each loop cycle will represent.

Delta Value Define loop parameters

드 Loop - Align	ments-BS				×
Start	End	Step			
1	10	1			
				Insert	
				Delete] [
			<u>~</u>		
Nest Level					
< > 🔽			Se	ettings	
Break Condit	ion				
		0K	Cancel	Help	

In this example the base alignment will loop 10 times. The loop will begin at 1 and end at 10 and each cycle of the loop will only represent one Iteration.

If the step where changed to 2 the base alignment would loop 5 times because each cycle of the loop would represent 2 iterations.

Delta Value Break Condition

A break condition is a way of telling calypso that once a certain condition is met the loop can be stopped and the program can continue.

	🗔 Loop - Align	ments-BS				\mathbf{X}
The second	Start	End	Step			
					Insert Delete	
	Nest Level			Setti	ngs	
	Break Condit	tion				
- 27 - 17 - 18 - 18 - 18 - 18 - 18 - 18 - 1			ок	Cancel	Help	

In order to set the break condition of a base alignment loop relative to the delta value a formula must be used.

Delta Value Break Condition

baseSystem().valueA<0.005</pre>

🗔 Loop - Align	ments-BS				×
Start	End	Step			
1	10	1			
				Insert	
			(Delete	
			V		
Nest Level					
< > 👻			Set	tings	
Break Condit	ion				
baseSystem	n().valueA<0.()05			
		ок	Cancel	Help	

This formula tells Calypso that the loop may be stopped when the Base Alignment *"baseSystem()."* Delta Value *"valueA"* is less than 0.005

Locating the Work Piece

Now that you have defined a base alignment you still need to tell calypso where your part is located relative to your machine coordinates

Select "Manual Alignment" from the drop down window.

You will now be prompted to take a series of points on your part to identify the location of your base alignment features.

Start Alignment

Some times a Base Alignment will contain many feature that are time consuming to measure manually. In order to save time during a manual alignment you may find it useful to create a "Start Alignment". This is especially useful if you will be measuring your part in different locations on your CMM since each time the part is moved a manual alignment must be completed.

To create a Start Alignment click on the "Define Base or Start Alignment" button located on the Resources screen

Click on the Start Alignment tab on the Load, Create or Change Base Alignment Window

Start Alignment

Notice that only the Standard Method is available as an option for the Start Alignment Check the box for Use Start Alignment and click ok

🗖 Load, Create Or C	hange <mark>v</mark> áse Alignmen	t 🗵	
Base Alignment	Start Alignment		
🔿 Create a nev	v base alignment		
Standard Met	hod	~	
or			
💿 Change curr	ent base alignment		
or			
🔿 Load a save	d base alignment		
Alignments		~	
	Loop		
	ОК	Cancel	

Fill in the features for the Start Alignment making sure that all six degrees of

Fill in the features for the Start Alignment making sure that all six degrees of freedom are accounted for. You should use any features you want but it should simplify the manual alignment process.

Constrains 2 degrees of	Start Alignment
rotational freedom	Alignments-Start Special Alignments(Start) Comment
Constrains 1 degrees of rotational freedom	Spatial Rotation
Constrains 1 degrees of Translational freedom	Planar Rotation
Constrains 1 degrees of Translational freedom	X Origin
Constrains 1 degrees of Translational freedom	Z Origin
	Manual Alignment Execute During Run As: Automatic Measurement

Start Alignment Now that you have a start alignment created when you run your program select "Start Alignment" under the Selection option.

	C. Start Measurement		×				
		Name					
	2	Alignments					
		Comment					
			<u>~</u>				
\sim							
$\langle \langle \rangle$			<u>™</u>				
	Selection	Result	СММ				
	🔿 🔿 Base Alignment	Use custom printout	Order of run				
	 Start Alignment 	Compact printout	From Characteristic List 🔹 🗸				
and the second	Current Alignment	✓ Display plots	Navigate-Feature To Feature				
	山, Manual Alignment		Use Clearance Plane 🗸				
	↓ Current Angninent (⊉ Alignments	tout	Run Mode				
	😫 Alignments(Start)	Its to printer	Slow Through First Feature				
	,hglhglkhgkg;kjg -unnamed-(CNC)	_ PostScript					
/uu	-unnamed-(Start)	ting results	Speed in mm/s				
al	006 006(CNC)		300				
ai	06-19-07						
will	06-19-07(CNC)	AIMS PIWeb					
	080303 080303[CNC]						
to	093023						
ort	101066						
.dl l	101066(CNC)						
atures	10inch_Length_Standard(UNC)						
		×					
<u>)</u>							
	ОК	Cancel	Help				

Now when select Manu Alignment it prompt you probe the st alignment fe not the base alignment fe

Type of Alignment Runs

A note on running different types of alignments:

Typically there are 5 alignment choices to choose from: "Manual Alignment"," Current Alignment", "Program Name", "Program Name (CNC) ", "Program Name (Start)". If you choose the manual alignment you must manually probe the alignment features on the part before the program will align the part. If you choose the Current Alignment the program does not align the part assuming the last alignment that was completed. If you choose the Program Name the part is aligned based on the last time a manual alignment was completed. If you choose the Program name with (CNC) the program will begin the alignment based on the last CNC alignment. If you choose the Program Name with (Start) the program will begin the alignment from the last time a Start Manual alignment was completed.

The other main reason for using alignments is evaluation.

Since the base alignment is best defined using non functional evaluation methods (LSQ), If an Alignment is needed for evaluation it is best to use an alternate alignment that will represent the functional evaluation of features.

It should be noted that most of the time it is not necessary to use an alternate alignment for evaluation as control frames can be established in many of the characteristics themselves.

🗖 Calypso User Desk - (C) Carl Zeiss - Alignments

<u>File Edit Yiew Resources Features Construction Size Fo</u>rm and Location <u>P</u>lan CAD Extras Planner Window <u>H</u>elp Info

RT Functions Stylus system Measurement Plan Measurement Plan Information Features representation... 😿 <u>F</u>eatures Settings Editor... Characteristics Settings Editor... Measurement Plan Comment... Preassignment for New Features... Save / Load Defaults. .. Space Point Mode ... Define printout Printout header parameters... **Results to File...** Name for output files Design custom printout

Choose the type of alignment that you require for evaluation.

Utilities

To create an alternate alignment go to the Resources drop down menu, choose Utilities...

🛴 <u>A</u>lignment

3D Best Fit Alignment
 PPS Alignment
 P6 Alignment
 Geometry Best Fit
 Alignment from Several Curves
 Probing system gualification
 Qualification of stylus system holders
 Gauge Correction Qualification
 Erosion Module
 T Textelement
 Graphics Element
 Save Alignment
 Load Alignment

Delete Alignment

💱 Base Alignment Match

Set Base Alignment to zero

The alternate alignment will appear in the characteristics list.

- 🗆 ×

Alternate alignments will reference the base alignment so it is not necessary to restrain all 6 degrees of freedom

CAlignment - 3D	Best Fit			×	
∮² 3d				Special	
3D Best Fit1				Comment	
Select Features			Select References		
	Align#	ent Base	Alignment		
Feature	Reference	Nominal X	Nominal	Y Nominal Z 📐	
				~	
<				>	
Best fit on CA	AD model		E	Best Fit	
	Decet				

After your alignment is set up you can use it as the alignment in your characteristics

	True Position	Ent Parts and the
	True Position1 Comment • Position Tolerance	
	Diametral V Shape Of Zone 0.0000 Tolerance	
Select the alignment	0.0000 X 0.0000 Y 0.0000 Z	
arop down menu	Feature	Choose your alignment from the alignments
	Alignment of Feature Datum Referenc Special	available.
	Base Alignment Alignment 3D Best Fit1	
	Clear Datum Reference Frame Load Datum Reference Frame Save Datum Reference Frame	PAR REALERAD AND
and the second		
	Actual	
	OK Reset	

Additionally for call outs such as X/Y/Z value or projection angle you can select the alternate alignment within the feature

	🗔 Features	×			
	Comment	Projection	Strategy		
	Circle 🚽	None	Evaluation		
	Clearance Group Nominal Definition Alignment				
	~	Options 🛛 🚽	(Base Alignmer		
20 Constant of the	- Tolerapee F		(Base Alignment)		
	X	0.0000	Keep Position		
A State of the second second second	UΥ	0.0000			
elect the alignment drop down	□z	0.0000			
enu and nick the alternate	🗆 D	0.0000			
	A1 X/Z 🔀	0.0000			
ignment that applies.	A2 Y/Z	0.0000			
	Space Axis 🛨	Z 🗸			
	Depth	0.0000			
	Start Angle 📐	0.0000			
	Angle Segmen	t 360.0000			
	Sigma	Form	Points		
	Min	Point no Point no	Max		
	OK Reset				

S m

а

Note: changing a features alignment will cause the navigation and measurement strategy of that feature to now be relative to your alternate alignment instead of your base alignment.

Navigation with Alternate Alignments

Sometimes it is not practical to measure all features of your part relative to the Base Alignment.

This is especially true when there is limited probing area, limited probing clearance or when a part is produced in multiple stages with multiple setups.

To help with this situation alternate alignments can be setup to "Re-Center" your measurement strategy so programs will run more smoothly and be less prone to crash when there is little probe clearance

Patterns with Alternate Alignments

Simple Alternate Alignments can also be created to copy patterns of features and make programming easier and more efficient.

- Step 1: Create the original pattern of features. Be sure to complete measurement strategy, clearance data, stylus data and all other aspects of the feature that can be copied to the patterns of features.
- Step 2: Create an alternate alignment using one of the features from the pattern.
- Step 3: Copy/paste the features in the pattern and set the alignment to the new alternate alignment.
- Step 4: Copy/paste the features in the pattern and set the alignment to the new alternate alignment.
- Step 5: Move the alignment feature to the correct location and notice that all of the other features will move with it. Once the pattern is in the correct location change the alignment of the features back to the base alignment.