Unknown involute gear

IMT Expert Workshop "GEAR"

Bangalore (India), May 23rd - 26th, 2011

Wolfgang Haug

Global Application Knowledge Management

Agenda

1	Customer & Request
2	Work piece and Measurement task
3	Inspection Specials
4	Inspection Specials
5	Inspection Specials
6	Further Remarks

Work piece and Measurement Task

Who is the customer?

Any customer with unknown gear

What are the requirements of the customer?

Reverse engineering or old gears without data

Dimensio

Preparations:

Count and measure

- 1. Number of teeth z
- 2. Tip and root diameter df da
- 3. Helix angle

Calculate module by (da + df) / 2 = d d / z = m Or measure pitch and m = p/Pi

The changes of module, helix angle and pressure angle are valid for the geometery (base circle diameter)

indian goomody	Dimonolo	
Gear type	Standard 🗾	
	External	
Number of teeth	11	
	[missing] 0 🗸 🗸	
Module	[normal] 2.2	-
Involute geometry		
Helix direction	Right 💌	
Helix angle	[beta] 24.5 🔽 💙	
Pressure angle	13	
Addendum modification	coefficient x 🔽 1 🔽	
Base circle	25.777819528956	

🖂 Main geometru

Defining the measuring job:

 Feed in with tooth thickness correction, profile 1 tooth, lead 1 tooth and reduced lead measurement, no pitch measurement

For more information about helix angle and base circle you have to change to listform.frm

With later evaluation you can modify the gear data and see the result

This is the output of the optimized unknown gear data

Main geometry			Dimensio
Gear type	Standard	•	
	External	•	
Number of teeth		11	
	[missing]		
Module	[normal]	2.2	-
Involute geometry			
Helix direction		Right 💌	
Helix angle	[beta]	24.5	
Pressure angle		13	
Addendum modification	n coefficient x 🛛 💌	1	
Base circle		25.77781952895	

This is the output according the nominal gear data from drawing

You can see:

The data are not the same

Example Description Further Remarks

Anything else to remark?

We make it visible.