

Carl Zeiss Industrial Metrology

Carl Zeiss IMT Algorithms

Carl Zeiss IMT Why Least Squares ?

Carl Zeiss IMT Why Maximum Inscribed ?

- Provides the correct result for
 - Size
 - Location
- On *internal* diameters
- When used with enough data density
- However it is not as stable as Least Squares because..
 - It fits on extreme points

Carl Zeiss IMT Why Minimum Circumscribed ?

- Provides the correct result for
 - Size
 - Location
- On external diameters
- When used with enough data density
- However it is not as stable as Least Squares because..
 - It fits on extreme points

Carl Zeiss IMT Why Minimum Zone ?

- Provides the correct result for
 - Form

- When used with enough data density
- However it is not as stable as Least Squares because..
 - It fits on extreme points

• What's the difference between Outer Tangential and Maximum Inscribed on an *internal* diameter ?

• What's the difference between Outer Tangential and Minimum Circumscribed on an <u>external</u> diameter ?

- What's the difference between Inner Tangential and Minimum Circumscribed on an *internal* diameter ?
- Nothing !
 Nothing !
 Is this a functional mating size fit?
 No !
 When might you use it ?
- To determine if there is enough material on a casting so that it will cleanup during machining, to evaluate the maximum size, or to evaluate wall thickness

- What about Inner and Outer Tangential ?
 What's the difference between Inner Tangential a
 - What's the difference between Inner Tangential and Maximum Inscribed on an <u>external</u> diameter ?
 - Nothing !

Carl Zeiss IMT

- Is this functional mating size fit?
- No !
- When might you use it ?

Maximum

Carl Zeiss IMT So why do we have Inner and Outer Tangential ?

We make it visible.

 Because it is more descriptive for Planes and Lines

Carl Zeiss IMT So lets generalize the math

- We have Gaussian Least Squares fits which minimize the square root of the sum of the squared errors
 - In this type of fit all data points have the same weight in determining the fit
 - There is *absolutely nothing functional* about this type of fit

- We have <u>extrema</u> fits (Inner and Outer Tangential, Max Inscribed, Min Circumscribed) which fit on the high points of the feature
 - In this type of fit only the high points have any weight in determining the fit
 - This is <u>absolutely functional</u> fitting for size and location like when mating a plane against a granite surface plate, or finding the slip fit pin that just fits into a bore <u>Maximum</u>

Inscribed Circle

- We have <u>minimum zone</u> fits which equally balance the high and low point of the feature
 - In this type of fit only the high point and low point have any weight in determining the fit
 - This is *absolutely functional* fitting for form analysis

Carl Zeiss IMT Summary

- Know the basic best math of each algorithm
- Understand the potential difference (pros and cons) each algorithm can provide
- Apply the algorithm that meets the needs of the application accordingly
- There is no one simple rule that can define what to use and when, as a CMM programmer, you must help decide what is best on a case-by-case basis

Carl Zeiss IMT Summary

- You need to consider
 - Data density
 - Purpose of the measurement
 - Accept / Reject
 - Process control
 - Correlation concerns

We make it visible.

- LSQ –2D Best Fit
 - Textbook math (Gauss) that minimizes the square root of the sum of the squared deviations
 - In certain cases it can reject a good part
 - Best use is for understanding the process, not for accept/reject analysis

	Best Fit3						
Feature Definiti	on				1		
			Select Featu	res			
			or (and)				
		Select Bore Pa	ittern		<u> </u>		
Features List –	Coordinat	tes:	Cartesian	c	Polar		
Feature	1			1-	T	T	
	^	LSQ	-2D-Be	st Fit		Ltol	Pos-1
•		LSQ Mini Tole	-2D-Be imum-2 :rance-3	st Fit D-Be: 2D-Be	st Fit	Ltol	Pos-T
∢ Best Fit Method		LSQ Mini Tole L1-2	-2D-Be imum-2 rance-; D-Best	₽ st Fit D-Be 2D-Be	st Fit	Ltol	Pos-T
 ✓ Best Fit Method LSQ-2D-I 	A Sest Fit	LSQ Mini Tole L1-2	-2D-Be imum-2 rance-3 2D-Best	st Fit D-Be 2D-Be Fit	St Fit st Fit st Fit	ion	Pos-T
∢ Best Fit Methoo LSQ-2D-f Best Fit	A Sest Fit	LSQ Mini Tole L1-2	-2D-Be imum-2 rance-; D-Best	st Fit D-Be 2D-Be Fit	St Fit st Fit st Fit ∵st Fit	ion	Pos-T

• L1 – 2D Best Fit

- Zeiss math that tries to show the worst case error more clearly
- In certain cases it can reject a good part, and will do so more than LSQ
- Best use is for understanding the process, not for accept/reject analysis, and it does this better than LSQ at showing the process problem
- The geometric element is determined in such a way to minimize the sum of the deviation values.
- This best fit is insensitive against outliers and leads to a clear result with low computational effort.

est Fit of bore pat	tern						E
	Best Fit3						
Feature Definit	tion						
			Select Feat	ures			
			or (and)				
		Select Bore P	attern		-		
Features List							
r outuroo Liot	Coordina	tes:	Cartesian	0	Polar		
Feature	x	Y	Z	D	Utol	Ltol	Pos-To_
		LSC Min	1-2D-Be imum-1	est Fit 2D-Be:	st Fit		Ē
<u> </u>			erance-	ZU-Be	STFN	[
Best Fit Metho	ıd	C L1-:	2D-Bes	t Fit	>		
1.90-20	Best Fit			Retation	✓ Transl	ation	
134-20							
Best Fit							
Best Fit	Rotation	Angle	Tra	nslation in X	<u></u>	T	ranslation in Y

We make it visible.

- Minimum –2D Best Fit
 - Textbook math (Tschebychev) that minimizes the maximum deviation
 - Will at times reject a good part, but less frequently than LSQ
 - Best use is for accept/reject analysis

T I	Best Fit3					_	
Feature Definiti	ion						
cature Demintion		Select Features					
			C	or (and)			
		Select Bore	Pattern			•	
Features List							
	Coordinat	tes:	⊙ Car	rtesian	C Pola	r	P
Feature	X	Y	Z	D	Uto	l Lto	l Pos-
		LS	0-2[)-Best F	it_		
(4	LS Mi To	0-20 nimu Ierai -2D-1) -Best F ım-2D-E nce-2D-1 Best Fit	it Jest Best	Fit	
Best Fit Method	j Doot Eit	LS Mi To L1	0-20 nimu lerat -2D-1)-Best F um-2D-E nce-2D-1 Best Fit	it Jest Best	Fit	
4) Best Fit Methor LSQ-2D-1	d Best Fit	LS Mi To L1	0-20 nimu lerat -2D-1	D-BestF Jm-2D-E hce-2D-I BestFit ⊠Rotation	it Jest Best	Fit Fit	
est Fit Methor LSQ-2D-f Best Fit	d Best Fit	LS Mi To L1	0-20 nimu leran -2D-1	D-Best F Jm-2D-E nce-2D-I Best Fit ⊠ Rotation	it Jest Best	Fit Fit	_
Sest Fit Method LSQ-2D-f Best Fit	d Best Fit Rotation	LS Mi To L1 Angle	0-20 nimu leran -2D-1	D-Best F Jm-2D-E nce-2D-I Best Fit ☑ Rotation	it Jest Best	Fit Fit	Translation
d Best Fit Method LSQ-2D-f Best Fit	d Best Fit Rotation	LS Mi To L1	0-20 nimu leran -2D-1	D-Best F Jm-2D-E nce-2D-1 Best Fit 	it Best ⊮	Fit Fit	Translation

We make it visible.

- Tolerance 2D Best Fit
 - Zeiss math that iteratively tries to accept the part like you would with a hard gage
 - Will accept the maximum number of parts
 - Best use is for accept/reject analysis and does a better job than Minimum

st Fit of bore pa	tern						
	Best Fit3					<u></u>	
Easture Defin	ition						
reature Denn	uun		Sele	ct Features		1	
			no	r (and)		_	
		Select Bore	Pattern				
Features List							
	Coordina	ites:	Cart	esian	C Polar		
Feature	×	Y	Z	D	Utol	Ltol	Pos-To_
		LS	Q-2D	-Best f	īt		
✓ Best Fit Meth	od	LS Mir Tol L1-	Q-2D nimu eran 2D-E	-Best f m-2D- E ce-2D- Best Fi t	Fit Best F Best I	it Fit	ŗ
∢ Best Fit Meth LSQ-2D	od -Best Fit	LSC Mir Tol L1-	Q-2D nimu eran 2D-E	-Best F m-2D-E ce-2D- Best Fi t	Fit Best F Best I	Tit Fit anslation	
I Best Fit Mething LSQ-2D Best Fit	od -Best Fit 	LS Mir Tol LT-	Q-2D nimu eran 2D-E	-Best f m-2D-E ce-2D- Best Fit	Fit Best F Best I	Tit Fit anslation	Translation in '

Carl Zeiss Industrial Metrology

Questions